

Manufactured Chemistry

Rethinking Reactor Design in the Age of Advanced Manufacturing

Addison K Stark
ARPA-E Fellow

Cost Plant Size

Cost

 $2\pi RL$

 $\overline{Plant\ Size} \propto \overline{\pi R^2 L}$

Cost $\overline{Plant Size} \propto \frac{1}{R}$

"Bigger is Better!"

Re-engineering

chemical reactors

... from the ground up

A new reactor design paradigm

Additive manufacturing

Multi-scale modeling

Computational design methods

Computational Design Methods

Size optimization
Optimization of dimension(s),
e.g. diameter

n(s),

Shape optimization

Boundary represented by parametric equation and manipulated

Introduces new features, e.g., vanes

Computational Design: Topology Optimization

Topology Optimization: Fluidic Diode (Passive Valve)

Tomorrow's Reactor Design Opportunities – Enabled by AM

Continuously manufactured complex topologies

ASME

Novel Materials

LLNL, printed aerogel

Printed composites

Harvard

Printed integrated electronics

WU, STL

